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1. INTRODUCTION

Multivariate statistical procedures developed under normality assumptions are well advanced (see, for

example, Anderson [1958] and Morrison [1976]). Some of these procedures claim robustness properties,

especially in a large sample situation, that may serve to broaden their range of application. Nonparametric

methods for multivariate analysis have been pursued, notably by Puni and Sen (1971), but their more

complete development awaits further research.

This report considers multivariate hypothesis testing in both one-sample and two-sample situations.

Comparable univariate procedures do not extend readily to higher dimensions. The methods considered

are based on the properties of statistically equivalent blocks, which have received attention from a number

of researchers, including Fraser (1957) in a tolerance interval context and Anderson (1966) and Wilks

(1962) in an inferential setting.

In section 2 the mechanics of the procedure, along with the supporting mathematics, are given. In

section 3 statistically equivalent blocks are applied in one- and two-sample situations. In section 4

proximity-based cutting functions are introduced and applied in the two-sample setting.

2. STATISTICALLY EQUIVALENT BLOCKS

The intent of the construction detailed in this section is to reduce the dimension of the problem in

order to exploit traditional univariate methods. This is begun by partitioning the p-dimensional real

product space RP, containing the observations into subspaces or blocks. The partition is effected through

the use of functions h:Rp -- R called cutting functions.

2.1 Construction of Blocks. Let x1, ..., xn be n observations of a p-component random vector x with

distribution function F(x) and let hi(x), ..., hn(x) be n (not necessarily distinct) real functions. The

functions hi(x), i = 1, ..., n will be used to impose an order on the vectors xj, ..., xn. The value of the

subscript i of the function hi(x) does not imply an order of application; i.e., hl(x) is not necessarily applied

first, h2(x) second, etc. To emphasize this, a permutation of the integers 1, ..., n (denoted k1, ..., kn) will

indicate the order of application.
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Let x(kj) be the vector among x1 , ... , xn, whose image under the mapping hk, (x) is the k1th order

statistic; i.e., x (k)is the observation x for which kI - I of hk (x) are less than hk (x(k1)) and n - kI

are larger. The cutting function hkx has an associated level set in RP consisting of

{x I hký(X)= hki(x(kj))1,

which defines a boundary between two blocks:

Bk1...k= {x Ihk1(X) < hk, (x(k))

Bkl+1 ...nl = {x lhk(x(kl)) < hk(X)}•

The union B1... kl U Bk, +1... n+1 = Q (the sample space) and, in particular, B, ...k will contain exactly

k, of the observations, and BkI +1 ... n+1 will contain the remaining n - k, observations.

This process is continued, applying the functions hk (x), ..., hk.(x) in sequence to further subdivide

RP until, after n iterations, there remain n + I blocks B1 ..., Bn+1 with B. fl Bk = O, j •k, and

UBi = 0. The function hk,(x) that is applied at each stage, and the order of its application, is not
i

chosen arbitrarily. It will be seen that the order of application is dictated by power considerations of an

associated hypothesis test. To ensure that the ordering of xI, ..., xn by hl(x), ..., hn(x) is unique, excepting

a set of measure zero, the requirement that hi(x) is continuous when x is distributed according to F(x) is

imposed.

Before proceeding further, an illustrative example is appropriate (perhaps imperative).

Example 2.1. Consider the sample X = {x1, ..., xn}, which is displayed as Table 1.
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Table 1. Sample X (p =2, n = 20)

[L I ____i_______
1 (4.91, 2.16) 11 (4.21, 5.93)
2 (6.05, 5.54) 12 (0.15, 5.99)
3 (3.48, 1.35) 13 (9.31, 3.77)
4 (8.09, 0.18) 14 (4.10, 0.45)
5 (2.53, 3.49) 15 (5.83, 2.42)
6 (1.62, 2.46) 16 (6.00, 0.27)
7 (8.37, 2.29) 17 (3.30, 8.93)
8 (3.17, 6.27) 18 (4.38, 7.81)
9 (6.02, 4.51) 19 (4.93, 6.64)
10 (8.50, 4.65) 20 (1.22, 1.54)

A scatterplot of the data appears in Figure 1.

10

89
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Figure 1. Scatterplot of sample X.

Arbitrary cutting funqctions hk 1(x), ..., hko(x), denoted

(c2, C2, C1, C2, C2, C2, cI, C2, C2, C1, C1, C1, C-2, C1, C2, C1, P2, cI, C1, C2), (2.1)

where

ci(x) = ci((xl, x2)) = xi, i = 1, 2

4 3



and the corresponding permutation,

(10, 5, 15, 3, 7, 12, 18, 2, 4, 6, 8, 11, 13, 16, 19, 1, 9, 14, 17, 20), (2.2)

will partition the sample space R2 into n + 1 = 21 blocks.

The first entry in the permutation (2.2) is k1 = 10. The cutting function from (2.1), hlo = c1, is

applied to xI, ..., x2o, and the pre-image of the 10th order statistic is determined to be x18 = (4.38, 7.81).

This defines the first cut which divides the sample space into two parts (blocks):

B1 1 0... 1 {x I c(x) < 4.38)

and

B 11...21  I {x14.38 < cl(x) I

The second entry in the permutation is k2 = 5. The cutting function h5 = c2 is applied next, but only

to those sample points which are members of B1...10 since the 5th order statistic will be bounded above

by the 10th order statistic. The application of h5 subdivides B1 1...0 into B1...5 and B6...10. The next

iteration, k3 = 15 and h15 = c2, paritions B11...2 1 into B11...15 and B 16 ...2 1 under the same argument; the

15th order statistic is bounded below by the 10th order statistic. These blocks are depicted in Figure 2.

This process is continued until each of the hN has been applied. The sample space will be partitioned

into 21 blocks, as depicted in Figure 3. In Figure 3, some representative blocks have been labelled. This

example is referenced in following sections.

2.2 Mathematical Foundation. Thus far, discussion has been limited to the mechanics of block

construction, without any motivation for engaging in such an exercise. Toward this end, consider

v --fdF(x), k = 1, ..... n~l

Bk
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Figure 2. Non-negative R2 after cuts hk, (x), h , h (x).
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Figure 3. Non-negative R2 after cuts hk (x), ... , h, (x).

The coverage vk is the probability assigned to block Bk under the distribution F(x). It can be shown (see

Anderson [1966] and Wilks [1962], p. 238) that the coverages are distributed jointly as an n-variate

Dirichlet distribution:

________"'"_______ ) •- -1-
( 1) V.) - 01- ... - vr)(7.÷n-1 (2.3)

The symmetry of the coverages v1, ..., vn÷1 in equation (2.3) leads to reference of the corresponding

sample blocks B1, ..., Bn+i as statistically equivalent blocks.
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As a direct consequence of the manner in which the blocks are constructed, the expression

u 0j) =• Vk, j =1...n
k--1

produces variates u(1) ..., u(n), which are distributed as the order statistics of a uniform random variable

on [0, 1] (Anderson [1966]). The joint distribution of the variates is an ordered n-variate Dirichlet

distribution (Wilks [1962], p. 236).

The importance of these results is twofold. First, the results do not depend upon the specific form

of the distribution function F(x) and, as such, are distribution free. Second, testing for variates uniformly

distributed may be accomplished through established procedures (see, for example, D'Agostino and

Stephens [1986]).

3. MULTIVARIATE HYPOTHESIS TESTING

Statistically equivalent blocks find use in both one- and two-sample situations. In the one-sample

case, a multivariate goodness-of-fit test may be accomplished. In the two-sample case, a test for identical

distributions follows immediately from the procedure by which the blocks are formed.

3.1 One Sample. Section 2.2 provides the theoretical foundation for a multivariate goodness-of-fit

procedure. Given a random sample x1, ..., xn from an unknown distribution F(x), and a completely

specified distribution G(x), the hypotheses

H0:F(x) G(x) Vx

and

H1 :F(x) • G(x)

may be established.

Example 3.1. Suppose that the data presented in Table 1 are to be tested for conformity to a bivariate

uniform distribution on the square [0, 10] x [0, 10]. The coverages of the blocks constructed in

accordance with cutting functions (2.1) and permutation (2.2) under a bivariate uniform assumption are

presented in Table 2. In the univariate case, the scalars x 1, ..., xn are naturally ordered x() < ... x(n),

6



and a test of Ho:F(x) = G(x) may be accomplished by determining whether u (k) G (x(k)), k = 1,..., n,

are distributed uniformly on [0, 1].

Table 2. Block Bi Coverages[ i IF i I_ vi_ I
1 .0536 12 .0041

2 .0314 13 .0071

3 .0365 14 .0529

4 .0040 15 .0363

5 .0274 16 .0351

6 .0790 17 .0302

7 .1267 18 .0615

8 .0298 19 .0537

9 .0057 20 .1526

10 .0439 21 .0935

11 .0350

The argument extends to the multivariate case, but the construction of an empirical cumulative distribution

function for a random vector x does not hold as much intuitive appeal. The statistically equivalent blocks,

once constructed from x1, ..., xn as described in section 2.1, can be renumbered without loss of generality

and accumulated to obtain alternative representations of a cumulative distribution function.

In consideration of this, a test based on probability assignment to intervals (blocks) without regard to

location seems more appropriate. Fisher (1929) provides such a test in which the null hypothesis is

rejected if

Pr{max vj > VI = (N + I)(l,- V)N- N+IC2(l - 2V)N + ... + (-1)k-1 N+ICk(l - kV)N
J

1 < V <1, k=l, ..., N (3.1)
k+l

exceeds a specified level of significance e.

7



The test can be carried out by replacing V on the right side of (3.1) by miax vj and evaluating the
J

expression. The computed value is the observed significance level, p. From Table 2, max V. = V20 =
J

0.1526; the observed significance level is p = 0.63, far too large to reject the null hypothesis of bivariate

uniformity.

3.2 Two Sample. The decomposition of a p-dimensional sample space into statistically equivalent

blocks allows for a ready extension to a two-sample test. Given independent random samples

X = {x1, ..., xn} and Y = {yl, ..., Ym} from unknown distributions F and G respectively, the hypotheses

H0:F(x) - G(x) Vx

and
HI:F(x) • G(x)

may be tested.

The mechanism for performing this test is perhaps more straightforward than for the one-sample test.

The creation of the statistically equivalent blocks Bi, i = 1, ..., n + 1, imposes an ordering of the

observations in X that was denoted by x(1) .... x(n). Having created the blocks based on the sample X,

a relative ordering of the observations in X and Y denoted as "<<," according to the rule that

Yi E Bi iff x0 -1) << Yi << x(«), follows immediately. Under the null hypothesis, there should be no

significant difference in the rank ordering of the observations from X (or Y) in the combined sample.

Therefore, any test based on relative ranking of the observations is appropriate for use in testing the

hypothesis of identical distributions.

Example 3.2. Consider the sample Y = {Yl, ..., Ymi shown in Table 3.

Figure 4 displays the blocks which were created in section 2.1 based on the sample X, with the points

corresponding to sample Y overlaid. Based on the blocks into which the Y observations fall, the

combined sample may be ordered as follows:

(x, x, x, x, x, x, x, x, x, x, x, y, x, y, x, y, y, y, x, y, y, y, y, y, x, x, x, x, y, y, y, y, y, x, y, y, x, y, y, y).

8



Table 3. Sample Y (p =2, = 20)

1 (13.90, 2.13) 11 (6.33, 4.44)

2 (7.71, 6.89) 12 (11.86, 0.83)

3 (9.67, 6.20) 13 (7.42, 2.31)

4 (7.56, 0.90) 14 (9.15, 3.94)

5 (10.39, 2.43) 15 (12.73, 6.12)

6 (13.47, 0.45) 16 (6.58, 3.04)

7 (14.55, 0.01) 17 (7.34, 3.69)

8 (7.46, 0.18) 18 (8.12, 2.59)

9 (11.25, 1.08) 19 (7.79, 3.68)

10 (13.0, 82.37) 20 (5.65, 2.40)

6 aP

0 -

Z 4 6 8 10 IZ 14

Figure 4. Blocks constructed from X with Y overlaid.

Any rank-based hypothesis test may be applied to this relative ordering. The Smimov two-sample test

provides a statistic of 0.55 and a corresponding p-value of 0.004. The Mann-Whitney test, which is

primarily a test for difference in location, provides a p-value of less than 0.002.

9



4. PROXIMITY-BASED CUTF1NG FUNCTIONS

Cutting functions appearing in the literature are most often component-wise: h(x) = xi, a choice which

facilitates presentation in two dimensions. Another class of cutting functions, based on proximity to the

observations X = {x} (where "proximity" is in an Euclidean metric sense), is now considered.

Let z r RP, the p-dimensional sample space containing the observations X = {xi and Y = {yj}.

Consider a function D:RP -4 Rn defined by Dx(z) = {di}, where the di are the Euclidean distances from

z to each of the observations x, e X. Without loss of generality, assume that d, _< d2•5 ... < dn. Now,

for any real function H:Rn --- R form the composite h(z) = H(D(z)). The function h will be called a

proximity-based cutting function (PB CF) because the value taken on reflects the proximity of z to the

members of X.

Consider the expression

P2

H(D(z)) = a aidi, ai > 0. (4.1)
i=1

It is clear that the order statistics d(1), ... , d(m), along with all linear combinations, are special cases of

equation (4.1). In section 2.1, the requirement that hi(x) be continuous when x is distributed continuously

was imposed. Since the distance functions d, are clearly continuous, the expression (4.1) is also

continuous, and the legitimacy of h(z) = H(D(z)) as a cutting function is established.

The motivation for examining this class of functions is as follows. In the two-sample case, the

question "How closely does a random sample X resemble a random sample Y?" is posed. Univariate rank

tests address this problem following an argument that, under a null hypothesis of no difference, the sample

X will be interspersed among the sample Y. The choice of PBCF is an attempt to extend this argument

to higher dimensions. Appropriately chosen PBCFs should partition the multidimensional space into

statistically equivalent blocks that will distinguish when the observations under consideration are indeed

in and among their counterpart.

10



Example 4.1. The choice of cutting functions in Example 2.1 gave level sets which were straight lines

(or hyperplanes in higher dimension). The nature of the level sets and statistically equivalent blocks is

not as intuitive for the PBCFs. Consider H(D(z)) = d2 + d3. This function maps a point z E RP to the

sum of the distances to the second and third closest x c X. For the data from Example 2.1, this cutting

function produces the level sets shown in Figure 5.

6

0 2 4 6 8 10

Figure 5. Blocks corresponding to h(z) = d2 + d3.

The statistically equivalent blocks do not resemble "blocks" at all for this choice of cutting function.

Rather, the blocks are the areas bounded by level sets. This cutting function may be used to repeat the

hypothesis test detailed in Example 3.2. In Figure 6, the sample Y has been overlaid on the blocks from

Figure 5. Some of the level sets have been removed to allow the observations y E Y to be distinguished.

A relative ordering of the two samples is again created. The Smimov test yields a statistic of 0.45 for this

ordering, which corresponds to a p-value of 0.034.

Since, in Example 3.2, the Smirnov test returned a p-value of 0.004, it would be unlikely to observe

an even higher level of significance for these data and this hypothesis regardless of the choice of cutting

function. In most practical situations, either value (0.004 or 0.034) is sufficient to abandon the null

hypothesis. The intent is that PBCFs lead to a more powerful test of hypothesis, and while the notion that

the sample X be interspersed among the sample Y under Ho is not incorrect, it is incomplete. The

requirement that Y be interspersed among the sample X is equally important.

11



10

8

6

4

0
2 4 6 8 10 12 14

Figure 6. Sample X blocks with Y overlaid.

Consider the situation depicted in Figure 7. The level curves from Figure 5 have superimposed a

subset of observations from Y that retain their integrity in the combined data set. Again, some level

curves have been removed in order that the values from Y may be seen more clearly. The Smirnov

statistic in this instance is 0.35, corresponding to a p-value of 0.264--the test has lost power against this

type alternative.

The problem is that the mixture of x's and y's in the combined sample is not homogeneous. A direct

approach to dealing with this situation is to reverse the roles of X and Y; i.e., construct blocks according

to the sample Y and consider the dispersion of the sample X. The two tests of hypothesis can then be

combined with a level of significance determined as follows. If the individual tests have significance

levels a1 and a2, respectively, then the combined test has significance level a < a 1 + a 2. To establish

a level of significance a, it will suffice to set a1 = a2 = W/2. If the individual tests have observed

significance levels (a.k.a. critical levels) of P, and P2, then the observed significance level for the

combined test is p = 2 min (pl, P2).

Figure 8 illustrates blocks constructed from Y with X overlaid. The Smimov statistic is 0.683,

corresponding to a p-value of 0.0008. The critical level of the combined test procedure is then

p:5 0.0016.

12
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Figure 7. Sample X blocks with Y subset overlaid.
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Figure 8. Blocks constructed from Y with X overlaid.
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5. SUMMARY AND CONCLUSIONS

The sample X, introduced in Example 2.1, was taken from a uniform distribution on the square

[0,10] x [0,10]. Not surprisingly, the test of hypothesis of bivariate uniformity detailed in Example 3.1

produced an observed significance level p = 0.63, suggesting good agreement between data and hypothesis.

The sample Y, introduced in Example 3.2, was taken from a uniform distribution on the square

[5,15] x [0,10]. Again, both tests of hypotheses presented in Examples 3.2 and 4.1 detected the change

in location even though the marginal distributions of the parent populations for X and Y coincide on the

ordinate. The Mann-Whitney test appeared more sensitive to the shift in location.

The situation depicted in Figure 7 is one in which the level curves from Figure 5 have superimposed

those observations from Y contained in [5,10] x [0,10]. In an attempt to overcome an attendant loss of

power, the roles of X and Y were interchanged and a combined test was performed. The combined test

had an observed significance level of 0.0016.

The concept of PBCF holds promise for the analysis of multivariate data. Additional research is

clearly in order. The power of the procedure has not been investigated; scaling of the variates in relation

to the PBCF was not addressed; and only a single PBCF was illustrated. Computationally intensive

methods for statistical data analysis is a natural extension of the powerful and economical computing

resources that are readily available to the researcher and will continue to receive emphasis as a research

area in mathematical statistics.
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